
THE BOOK WAS
DRENCHED



I
VERS <OU 160695

0^
OQ

JIVERS

BRARY





PSMANIA UNIVERSITY LIBRARY

Gall No. "5^^ No.

Author .

This book should be^turned on ou befor<i the date

Jast marked below. ^





THE EVOLUTION
OF

MATHEMATICAL PHYSICS

Being the Rouse Ball Lecture for 1924,

BY
HOilACE LAMB, Sc.D., F.R.S.,

HONORARY FELLOW OF TRINITY COLLEGE

CAMBRIDGE
AT THE UNIVERSITY PRESS

1924



PRINTED IN GREAT BRITAIN



THE EVOLUTION OF
MATHEMATICAL PHYSICS

The founder of this Lecture has

chosen as one of his special inter-

ests the history of Mathematics, both

through the ages and as reflected in the

studies of the University. Within a short

compass he has given an account of the

development of the subject which con-

trasts with the elaborate treatises of

previous writers by its concentration on
essentials, and also by the glimpses which
it affords of the personalities of the

mathematicians whose achievements he
records, with their limitations and their

failures, as well as their ambitions and
successes.

The study of the successive steps in the

evolution of any subject is an attractive

pursuit, and many years ago, speaking not

far from this place, I was led to hazard

some speculations as to the ideas which
prompted and guided the very first steps

in the development of Greek Mathe-



matics. I even ventured to say, not alto-

gether in the spirit ofparadox, that if any

one scientific invention could claim pre-

eminence above all others, I should be

inclined to suggest a monument to the

unknown inventor of the mathematical

pointy as the first step in that long process

of abstraction and idealization which
has culminated in the science (and not

merely mathematical science) of to-day.

I remember that the eminent engineer

who sat near remarked to me afterwards

that if the scale of subscriptions was

to be appropriate to the dimensions

of the object to be commemorated he

would gladly head the list. An even

more eminent astronomer told me that

the whole address was an elaborate

scientific joke. Such friendly satire did

not disturb my opinion ; but specula-

tions on the psychology of the primitive

mathematicians, attractive as I think

they are, are necessarily precarious, and
I am not tempted to venture on this

field again. The task which I would
attempt to-day is to trace the leading

steps in the development of that great



[ 7 ]

tradition of Mathematical Physics, as

distinguished from Dynamics and As-

tronomy, which began in the early years

of the last century, and has dominated

physical speculation until quite recent

times, when new discoveries and new
ideas have emerged, calling for newer
methods, without, however, rendering

the old ones obsolete. The ground has

of course been traversed before, but not

I think quite from the present point of

view. I am not concerned with physical

theories as such but rather with the

mathematical dress which they have as-

sumed from time to time. My object is

to shew how it comes about that we
have inherited a mathematical scheme
which in its final form embraces subjects

physically so different as Heat-Conduc-
tion, Hydrodynamics, Elasticity, Mag-
netism, Electricity, and Light, and can

be made to include any one of these by
assigning proper names to the symbols.

The scheme admits of course of being

set forth in a purely abstract form with-

out any physical reference at all, and

this has in fact been done ; but its chief
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value is for the physical analogies which
it facilitates, and in which it originated.

The development has been continuous,

although the wide scope of the final

result could not have been foreseen.

The time I have indicated as a starting

point was peculiarly favourable. The
great calculator Euler had ranged over

the whole field of Mathematics, and had
given to many parts of it almost the final

form which we find in our text-books.

Lagrange, Laplace, and Legendre had
developed the Newtonian Astronomy,
and made important contributions to

general Dynamics, as well as incidentally

to Analysis. So that when attention

began to be directed to physical subjects

the available mathematical resources were
far in advance of what had been within

reach at any earlier period.

Isolated questions of course had been

treated previously
;

for instance the

flexure of bars had been discussed by
Bernoulli and Euler. More important

from the present point of view is the

foundation of Hydrodynamics by Euler,

who formulated the fundamental differ-
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ential equations, and proceeded to inte-

grate them on the supposition that a

velocity-potential exists. He was careful

to note, however, that there are cases,

such as that of uniform rotation about

an axis, where this condition is not ful-

filled. The theory of plane waves of

sound was also known, and I need hardly

recall the subject of vibrating strings with
its reactions on Analysis, and the long

controversies which resulted. But the

starting point of Mathematical Physics,

in the now general sense of the term, is

to be fixed I think about the time when
the storms of the French revolution had
subsided and were succeeded by the com-
parative tranquillity of the early Empire.
If a more definite date is required, we
may perhaps fix on the year 1 807, which
was marked by the publication of

Poisson’s first memoir on Sound. This

deals with spherical waves, with waves
in an atmosphere of variable density and,

most astonishing of all, with waves of

finite amplitude. He finds that the

boundaries of such a wave advance with
the ordinary velocity of sound, but omits



[lo]

to examine the progressive change of

type. This was only done long afterwards

by Stokes. It may I think be said of

Poisson that, with all his extraordinary

power in dealing with a problem when
once it had been reduced to an analytical

form, and the great achievements which
stand to his credit, he was less concerned

with the physical interpretation of his

results.

The same year, 1807, is still more
memorable for the first instalment of

Fourier’s investigations on the Conduc-
tion of Heat, whose importance extends

far beyond the special subject. Mathe-
maticians so eminent as Hamilton,
Maxwell, and Kelvin have found it

difficult to speak of Fourier in measured
terms of appreciation, whether of the

ingenuity of his mathematical processes,

the elegance of his results, or of his

broad and philosophical outlook, as re-

vealed especially in the preface to his

formal treatise. Fourier had indeed the

advantage of a rather varied career. He
was trained at first for the priesthood,

then rejected for the (royalist) artillery



school, with the remark in so many
words that the lowliness of his origin

would have disqualified him “ even if he

had been a second Newton.” He be-

came a pupil at the Ecole Normale, and

later professor at the ^cole Polytech-

nique. He was included in Napoleon’s

expedition to Egypt, as a Member of

the ambitious Egyptian Institute which
it was proposed to found, and of which
Monge was President. Returning to

France in 1802 he was made prefect of

the Department of the Isere, possibly

on account of the administrative talent

which he is said to have displayed in

Egypt, and it was at Grenoble that he

began the composition of his classical

work. His subsequent history, though
interesting and honourable, hardly con-

cerns us, but the facts I have mentioned

suggest that his varied and responsible

experience, as well as the literary studies

which were an obligatory part of his

early education, and in which he is said

to have excelled, was not without in-

fluence on his work, or on the luminous

style in which it is explained.
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At the very outset of his book we
meet for the first time with a process

which now seems so obvious and familiar

that the mention of it may appear trivial.

I mean the device by which the rate of

change of a physical property at any
point of a medium is calculated in terms

of its flux into an element of volume.

But it could hardly have been quite

obvious, for many years elapsed before

so simple a matter as the equation of

continuity in Hydrodynamics was proved

in this way by William Thomson, who
also pointed out its utility in the expres-

sion of Laplace’s equation = o in cur-

vilinear co-ordinates. At a later period

the process received a brilliant extension

at the hands of Maxwell, in his theory

of gases, where it was applied to the flux

of momentum and also of energy.

The mathematical methods employed
by Fourier in his treatment of special

problems repay a careful study. As they

stand they would often fail to satisfy

even a lenient standard of mathematical
rigour, and indeed they appear to have
raised doubts in the minds of Laplace,
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Lagrange, and Legendre, who formed
the distinguished commission charged to

examine one of his memoirs. But they

are models of what may be called mathe-
matical experiment

; and at any rate

they are successful in the end, and the

results are easily verified. The form,

again, in which these results are presented

is I think quite unlike anything that had
gone before, especially in the occurrence

of definite integrals, but a slight exami-

nation shews that it would be difficult

to imagine anything more adapted to the

particular circumstances, or really more
lucid. One special question examined by
Fourier may be noticed for its connection

with more recent speculations. It had
been debated whether the earth has an

intrinsic store of heat, or whether it was
altogether dependenton the sun. Fourier’s

conclusion is that the internal tempera-

tures are independent ofthe solar influence,

but that the latter is mainly responsible

for the superficial temperatures. Among
Fourier’s anticipationsofmodern practice,

we may cite his recourse to graphical

methods for the solution of equations.
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sity that results should be capable of re-

duction, when needed, to numerical form.

The general equations of Hydrody-
namics date from Euler (1755), but a

long period elapsed before any but the

simplest applications were made of them.
The theory of waves on water was pro-

pounded by the French Academy as the

subject of a prize essay for the year 1815.

The problem proposed was to trace the

effect of a given initial disturbance of

the surface. The memoir of Cauchy,
to whom the prize was awarded, is re-

markable as containing the first satisfac-

tory proof of the persistence of the

irrotational quality in a portion of fluid

which possesses it at any one instant.

The analytical difficulties of the special

problem are considerable, owing mainly

to the fact that there is no definite wave-
velocity, but the genius of the author

supplied what was wanting, and the notes

afterwards appended to his memoir con-

tain a store of important analytical results,

relating chiefly to definite integrals. In

particular we meet here for the first time
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with the integrals known afterwards by
the name of Fresnel, who encountered

them in his work on Physical Optics.

A parallel and independent memoir by
Poisson, who was himself debarred from
competing for the prize, confines it-

self more closely to the terms of the

problem, but agrees in the main results.

It is remarkable that neither writer

pauses to consider the simpler and more
fundamental properties of a simple-har-

monic train of waves. This was left for

Green and Airy, and extended in various

ways by Stokes. It should not be over-

looked that the work of both Cauchy
and Poisson was only rendered possible

by Fourier’s analysis of an arbitrary

function into simple-harmonic compo-
nents. Not long afterwards Poisson took

up the problem of the sound waves in

an unlimited medium due to arbitrary

initial conditions. The result is given in

what Airy (I think) called the unsatis-

factory form of a definite integral. The
interpretation was not dwelt upon by
Poisson, but here again had to wait for

the penetrating genius of Stokes. It is
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then recognized that Poisson’s formula,

far from being unsatisfactory, gives pre-

cisely what one would wish to know, in

the mostconvenient and appropriate foi-m.

From this period onwards the flow of

production was so rapid, and embraced

so many subjects, that it is rather diffi-

cult to review it in any orderly sequence.

One very important matter is the growth
of the theory of Elasticity. The interest

in this subject had been revived by the

experiments of Chladni on vibrating

plates, which formed a feature of the

lectures on Acoustics which he gave in

various places, as they have of most

courses on the subject ever since. A
skilled experimenter, and endowed with

a fine musical ear, he was able not only

to evoke a vast number of figures of nodal

lines, formed by sand strewn on the

plates, but also to assign their relative

pitch, and even to formulate approximate

numerical relations. His lectures were
very successful, and appear to have ex-

cited the interest ofthe fashionableworld,

much as a lecture on soap-bubbles might
at the present day. His visit to Paris
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was the occasion, at Napoleon’s sugges-

tion, that the theory of the figures now
known by his name was proposed by the

Academy as the subject of a prize essay

for the year i8ii. Among the com-
petitors was one of the slender array of

women who have figured in the history

of Mathematics, Mdlle Sophie Germain.
This lady had found inspiration in the

pages of Montucla, and had devoted her-

self with great enthusiasm to the study of

Mathematics, to the grievous distress of

her parents. Lagrange, strange to say,

had warned her that the problem was
hopeless, and indeed her attempts were
not very successful, even though she

gained the prize at a subsequent com-
petition. Like other of the earlier writers

on the question, she assumed, on the

analogy of Euler’s problem of the bar,

that the energy of deformation of a plate

is a quadratic function of the principal

curvatures. This is sufficiently correct,

but the choice of the particular function

was unfortunate. The further history of

the problem is very interesting mathe-
matically, but would lead us too far. The

L.R.B.L.
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question could not be satisfactorily treated

until the general theory of Elasticity had
been further developed, and the relations

between stresses and strains established.

An additional impulse to the subject came
from the wave-theory of Light which was
growing rapidly at the hands of Young
and Fresnel. The first essays at a general

theory of elastic solids were made by
Navier, Poisson, and Cauchy. Their in-

vestigations are noteworthy as including

the first systematic attempts to deduce

the properties of a body from the explicit

hypothesis of a molecular structure. The
word “molecule” it is true occurs over

and over again in previous mathematical

literature, but its meaning is usually that

which we attach to the word “particle,”

viz. a small portion of a substance really

treated as continuous. Laplace, again,

had given a theory of capillarity based

on the conception of forces having a very

minute range of action, but the substance

is treated as continuous, and the work
was really a development of the theory

of Attractions, with a generalized law of

force. In the memoirs of Navier and
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Poisson, and to a large extent in those of

Cauchy, an elastic solid is conceived as

a static arrangement of discrete molecules

separated by finite intervals. The mole-
cules are treated as mathematical points,

and the mutual forces are supposed to be

functions of the distance only, indepen-

dent of direction. The range of the

forces, though small, is assumed to be

large compared with the intra-molecular

spaces. All this is of course a possible

conception, and a suitable matter for

mathematical study, whether it corre-

sponds to reality or not. One further

assumption was, however, made, which
has been much questioned, viz. that the

displacements of consecutive molecules,

when the body is deformed, are con-

tinuous functions of the co-ordinates.

As applying to isotropic bodies in which
the configuration of molecules about any
point is assumed to be quite irregular,

this can hardly be defended, but there is

more to be said for it in the case of a

crystalline structure. The continuity

which is assumed in modern theories of

Elasticity relates of course to averages.
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and not to individual molecules. With-
out further examination of the molecular

assumptions, some of which are un-

necessarily restricted, whilst the reason-

ing is sometimes difficult to follow, we
may note that Navier and Poisson were
led, in the case of isotropy, to equations

which coincide with those generally ac-

cepted, except in one particular. The
inference that there is an invariable ratio

between the volume-elasticity and the

rigidity of a substance was long a matter

of controversy, but has not survived the

criticism of Stokes and the experiments

of KirchhofF. Having obtained his equa-

tions, Poisson proceeds to apply them to

various special problems, such as the

radial vibrations of a sphere, the lateral

vibrations of bars, and the symmetrical

vibrations of circular plates. The latter

especially is a skilful piece of analysis,

involving Bessel Functions of both real

and imaginary arguments, and is pushed
to numerical results. The paper was soon

followed by another, dealing with the

problem of plane elastic waves in an
isotropic solid. The two types charac-
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terized by longitudinal and transverse

vibrations, respectively, are distinguished,

and the corresponding wave-velocities

found.

A great improvement in the theory

was made by Cauchy, who initiated the

modern theory of stress and strain. As
an alternative to the method which he

had first adopted, he abandons all ex-

plicit mention of molecules, and treats

a solid as practically continuous. Ex-
tending the notion of pressure which
was current in Hydrostatics, he assumes

that the force between any two adjacent

parts of a substance can be regarded as

made up of actions between two strata

of excessively small depth on the two
sides of the interface, and may accord-

ingly be treated as a surface-force or

“stress.” He goes on to investigate the

relation between the stresses across diffe-

rent planes, and to express them geo-

metrically by means ofthe stress-ellipsoid.

This use of an ellipsoid to represent the

relations between various directional pro-

perties in Mechanics is I believe original

with Cauchy, who applied it also in the
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theory of strains, as well as in the more
familiar matter of moments of inertia.

His equations for an isotropic substance,

obtained by this second method, are

based on the hypothesis that the prin-

cipal axes of stress and strain coincide,

and have the now usual form, with two
independent elastic constants. Thewhole
procedure is in fact that found in modern
books. It should be mentioned also that

Cauchy in his work on strains introduces
for the first time the notion of the infini-

tesimal rotation of an element, afterwards
utilized by Stokes and Helmholtz.
Cauchy next took up the theory of

crystalline solids, this time naturally on
the basis of an assumed orderly arrange-
ment of molecules, but his results have
failed to stand the test of experiment,
or to furnish a satisfactory explanation
of double-refraction. The true theory of
elastic solids in the general case, free

from all molecular hypothesis, was given
later by Green, whose work is the first

example of the application of energy-
methods to the physics of continua, the
analytical process being an adaptation of
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the variational method of Lagrange. It

is fortunately not my task to discuss these

things from the point of view of Physical

Optics, or to review the long-continued

and obstinate attempts of successive

physicists to construct a mechanical

model of the ether, now definitely aban-

doned. At the present time the real

outlet for the theory of elastic waves and
their reflection and refraction is in rela-

tion to Seismology, where it has led to

important results. The chief interest of

the theory of Elasticity to us at the

moment consists partly in the gradual

emancipation from molecular assump-

tions, and partly in that the analytical

relations which it involved were destined

to find a wider and more important sphere

of application. To take a very simple

instance, in the equations of equilibrium

of an incompressible isotropic solid,

^ =o, &c., &c.,

du dv dw _
dx^ dy ^ dz

the symbols are such as present themselves
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in very different fields, and it is to be re-

membered that it was from this very ex-

ample that Thomson, in his early specu-

lations, constructed analogies between

elastic displacements and rotations on
the one hand, and distributions of elec-

tric and magnetic force in free space on

the other.

To observe thegrowth ofmathematical

Electricity we must go back to the year

1 8 1 1 , when Poisson laid the foundations

of Electrostatics as a branch of the theory

of Attractions. Adopting the hypothesis

of two electric fluids, he remarks that

the resultant electric force at any point

in the interior of a conductor must be

zero. Combined with Coulomb’s law of

electric force, and Laplace’s relation be-

tween normal force and surface density,

this led at once to the distribution of

electricity on a charged conductor in the

form of an ellipsoid. Poisson further in-

troduces the conception (but not the

name) of the electric potential, and lays

down the conditions which it has to

satisfy at any point of the field due to a

system of electrified conductors. In par-
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ticular he investigates the induced distri-

bution on a sphere due to any system of

external charges. Finally, by a triumph

of analytical skill, he solved the classical

problem of two electrified spheres.

From the present point of view there

is little further to record till Oersted’s

discovery of the action of an electric

current on a magnetic needle (1820).

This was followed almost immediately

by Savart’s analysis of the magnetic force

into forces due to the infinitesimal ele-

ments of the electric circuit, and the

simple rule which he formulated. This

led Ampere to study the mechanical

action between electric circuits. He
analysed this into forces between the

elements of the circuits, acting in the

lines joining them, and subject to the law

of action and re-action. His theory was
based on a few plausible assumptions, and

on a series of experiments devised in a

strictly mathematical spirit to narrow
down the various issues to be decided.

His work is now seldom referred to,

but it exhibits the mathematical skill

which he had exercised before in the
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Calculus of Variations, as well as in other

directions. It is true that we are still in

the atmosphere of action at a distance,

and Ampere appeals in fact to the example
of Newton and Gravitation, but only

with Newton’s qualification. He does

not claim to have arrived at an ultimate

explanation of phenomena, but only to

have established a formula from which
these can be calculated. The consequences

which he deduced are more significant

than the formula of elementary attraction

itself. In the first place he finds that the

resultant effect of a closed circuit on an

element of another circuit depends on a

vector which is afterwards identified with
magnetic force. He then finds the force

exerted on a small closed circuit, and

proves it to be identical with the force

on an elementary magnet. The familiar

representation of a current by a magnetic

shell follows, as well as the theory that

the properties of a magnetized body are

due to currents circulating in the mole-

cules. Two provinces of physics, hitherto

distinct, were here for the first time co-

ordinated.
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The views of Ampere, owing to their

novelty, naturally excited at first some
distrust. Preconceptions, especially when
they have a definite form, die hard

;
and

it is to be remarked that Poisson’s great

memoir on Magnetism, in which the

hypothesis of two magnetic fluids is

supposed to be verified, coincides almost

in time with the latest publication of

Ampere.
A good deal of Poisson’s work on

Magnetism has become classical, in the

sense that subsequent writers have found

nothing better than to reproduce it. It

is largely independent of the two-fluid

theory, and is really a theory of mag-
netic elements, afterwards treated ex-

plicitly as such, without further hypo-
thesis, in the extensions given later by
Thomson. The transformation by which
the potential of a continuous arrange-

ment of magnetic elements is expressed

as due to distribution of imaginary mag-
netic matter through the volume and

over the surface now appears for the

first time. In his treatment of magnetic

induction Poisson imagines his two fluids
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to be free to move within molecular

spaces which for definiteness he treats

as spherical. This latter assumption, may
be taken as merely illustrative, although

it leads to a definite and sometimes im-

possible value of a coefficient. The par-

ticular problems solved, viz. the magneti-

zation of a spherical shell, and of an

ellipsoid, by a uniform field retain an

interest independent of this special hypo-
thesis.

The years which immediately followed

were marked chiefly by the researches of

Navier, Cauchy, and Poisson on Elasticity

which have already been noticed. We
come next to Green’s Essay on Electricity

and Magnetism (1828). The mathe-
matical theory of Electrostatics, which
had been initiated by Poisson, is here

resumed and in a sense completed. The
treatment is based on the theorem now
generally quoted by the author’s name.
The novel point here is not the trans-

formation from volume- to surface-in-

tegrals, for this was to be found in

Poisson, but that it is the first example
of the reciprocal relations which pervade
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not only Dynamics, but all branches of

Physics. In the present case it is a re-

lation between two different distributions

of Electricity, but it only needs to give

mitable meanings to the symbols to

translate it into the language of Hydro-
dynamics or Acoustics. From the mathe-
matical standpoint we have, further, the

treatment of singularities of harmonic
functions. The electrostatic theorems

due to Green are reproduced in most
modern text-books. Among original re-

sults we may notice the screening effect

of conducting surfaces, the distribution

of electricity on a spherical conductor

due to internal or external charges, and

the theory of condensers.

The phenomena of mutual induction

and self-induction of electric currents

were discovered by Faraday in 1831-35,
but a long period elapsed before these

received explicit mathematical investi-

gation, and a longer still before it was
recognized that Faraday’s own descrip-

tion in terms of lines of force could be

put in an exact mathematical form. The
work of F. Neumann (1845—47) was
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the complement of that of Ampere and
involved the same kind of ideas. The
additional experimental fact adduced

was Lenz’s law. When there is relative

motion of two circuits, or of a circuit

and a magnet, currents are induced and

there are consequent mechanical forces,

which can be calculated from the for-

mulae of Ampere. The law referred to

is that the sense of the induced currents

is such that these mechanical forces act

in opposition to the relative motion.

Neumann assumes this to be true also

as regards the infinitesimal elements into

which the circuits may be resolved, and

further that the electro-motive force of

induction is proportional to the velocity

of the relative motion, to the strength

of the inducing current or magnet, and

to the component (with sign reversed)

of the mechanical force in the direction

of the relative motion. For the two
former of these assumptions there was
the experimental evidence of Faraday

and others, the latter was adopted as the

simplest supposition consistent with the

law of Lenz. From this basis he proves
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that the total current induced in a circuit

by the motion of a magnetic pole is pro-

portional to the change in the potential

of the pole in relation to a unit current

in the circuit, and again to the change
in the flux of magnetic force through
the circuit. This is really Faraday’s rule,

except that it is not expressed in so many
words in terms of lines of force. In the

second paper he shews that the me-
chanical action between two currents

depends on the mutual potential of the

two circuits, viz.

f fcos €dsd/

Jj ’

and refers the electro-motive forces of
induction to changes in the value of this

function.

We are still in the atmosphere of action
at a distance, and it was therefore not
unnatural that Weber and others should
have looked for an explanation both of
the mechanical and the inductive effects

in a modification of Coulomb’s law of
force between electric charges. Since the

actions to be explained depend on rates
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of change, violence had to be done to

previous notions, and terms depending

on mutual velocities and accelerations

were introduced. The resulting law of

Weber, which happened to be so framed

as not to conflict with the conservation

of energy, long exercised a fascination on
continental writers, owing to the mathe-
matical neatness of the processes by which
the results of Ampere and Neumann
could be deduced from it. It was not

finally abandoned until Helmholtz shewed
that under certain conditions it implied

unstable electrical equilibrium, as well as

other paradoxical consequences.

The year (1846) in which Weber’s
law of electric force was promulgated

marks also very approximately the be-

ginning of the modern tendency to ignore

action at a distance, and to bring the

medium across which electric and mag-
netic actions take place into the reckon-

ing. The elastic analogies of Thomson
have been mentioned already. Another
analogy, between Electrostatics and

Heat-Conduction, had been noted by
him a little earlier, and used to illustrate
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various propositions in Attractions. The
mathematical theory of Magnetism, next

taken up by Thomson, was set forth in a

form free from all hypothesis, the mag-
netic fluids of Poisson and others being

now replaced by the notion of magnetic
polarization. He further added to the

grammar of continua by developing the

conceptions and the properties of so-

lenoidal and lamellar distributions of

magnetism, which were suggested by
Ampere’s investigations. The two de-

finitions of magnetic force in the interior

of a magnet, afterwards distinguished as

magnetic force and magnetic induction,

are also introduced here for the first time.

The whole memoir is a model of scientific

exposition, and recalls the ‘grand style’

of the classical mathematicians, and es-

pecially of Gauss.

A final step towards a complete for-

mulation on modern lines of the mathe-
matical relations of Electricity consisted

in the expression of magnetic force, or

rather magnetic induction, in terms of

the vector now known by the name
of electric momentum. This vector, or

L. R.B.L. 3
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its analogues, presented itself in various

ways. We have first an investigation by
KirchhofF on the laws of induction in

three-dimensional conductors, based on
Weber’s law of electric force. Almost
simultaneously we have Stokes’s paper

on the Dynamical Theory of Diffraction,

which is not so important nowadays as

a contribution to Optics, but as contain-

ing a calculation of the waves in an

elastic medium due to any initial dis-

turbance. This was made to depend

on Poisson’s integration of the general

equation of sound, and it is here that we
meet for the first time with a full inter-

pretation of this solution, which led up
to that of the elastic wave-problem. The
relation to the present matter consists,

however, in the kinematical process by
which displacements in any medium are

expressed in terms of expansions and
rotations, so that in Clifford’s language

everything is reduced to “squirts and

whirls.” The same process occurs again

some years later in Helmholtz’s great

memoir on Vortex Motion, where we
meet explicitly with the analogy of the
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relations between electric currents and

magnetic force to those between vortices

and jfluid velocities. This analogy is

developed towards the close of the in-

vestigation, but we can now see that it

was implicit from the beginning in the

very definition of a vortex. In both

investigations the connection is estab-

lished by means of a subsidiary vector,

which in the electric analogy corre-

sponds to the electric momentum of

Maxwell.
The paper by Maxwell “On Faraday’s

Lines of Force,” written shortly after he
had taken his degree, is now perhaps

little read, but deserves attention if only

for the introduction, written in his own
incomparable style, where we find already

laid down the lines on which his sub-

sequent speculations were to proceed.

From the mathematical standpoint the

paper is a comprehensive statement, with-

out a suggestion of theory, describing

the known facts of Electro-magnetism in

terms of a system of vectors supposed to

exist at all points of the field. Precision

is here given to Faraday’s idea of lines

3—

z
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of force, whether electric or magnetic,

by means of the analogy of the motion
of an incompressible fluid. The . new
vector here introduced into Electro-

magnetism is that of momentum, and
its rate of change is shewn by a dynamical,

argument to be responsible for electro-

magnetic induction. The proof of this

depends on the expression for the energy

of the field in terms of an integral ex-

tending over space, and is a deduction

from the conservation of energy. The
dynamical relation between pondero-

motive and inductive forces had been

indicated in a general way by Helm-
holtz in his celebrated tract, and this

may possibly have been the first sugges-

tion to Maxwell’s subsequent dynamical

theory.

The way was in fact now clear, so far

as the mathematical scheme is concerned,

for Maxwell’s definite theory. He ven-

tured as we all know to go a step further

and to look behind the mathematical rela-

tions for a deeper insight into the matter,

and if possible for a physical or mechani-
cal meaning of the analytical symbols.
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Regarding the question as a dynamical

one he sketched out a mechanical model
of the ether which should reproduce the

known electrical relations, rather with a

view of convincing himself that such a

model was possible than as a definite ex-

planation in detail. This was followed

by the classical paper in which the laws

of electro-magnetism were shewn to be

deducible from dynamical considerations,

without the assumption of any particu-

lar mechanism. The final presentment

in his treatise, in which use is made
of Lagrange’s generalized equations, is

too familiar to need further reference.

Whether we prefer to regard it as an

analogy or an explanation, it is a striking

exemplification of the originality of

Maxwell’s genius.

At this point we may appropriately

close our survey, for I do not undertake

to be a guide in the subsequent history,

which is still in the making. It is, how-
ever, to be remarked that Maxwell, who
placed as it were the crown on one period

of Mathematical Physics, was also in a

sense the initiator of another, by his work
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on Gas Theory, which involved the crea-

tion of a molecular calculus.

Looking back on this long history we
can trace through all the details an in-

creasing tendency. The period we have
been reviewing began under the influence

of the great achievements of Laplace and
Lagrange in the development of the

Newtonian Astronomy. The notion of

action at a distance, though not regarded

by Newton himself as the last word on
the matter, had had a great success, and
when the field of Physical Astronomy
was beginning to be fully occupied, the

mathematicians who turned their atten-

tion to physical questions very naturally

assumed that the same conception would
be fruitful in other directions. For-

tunately there was one physical process

where these ideas obviously did not apply.

Heat was indeed imagined to be a ma-
terial, and moreover a fluid substance,

but hardly molecular, and its transmission

in conductors was naturally regarded as a

continuous process. To this we owe the

work of Fourier, which stands by itself,

outside the historical order of develop-
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ment, except in so far as the solution of

particular problems involved analytical

processes, and led to analytical theorems

which had a much wider scope. When
the molecular structure of bodies was
taken into account, as in the early days

of Elasticity, the steps were somewhat
vague and uncertain, and I think that the

writers themselves must have experienced

some reliefwhen they had finally arrived

at their differential equations, and felt

really at home. It was a great improve-

mentwhen the consideration ofmolecular

forces could be dispensed with and re-

placed by Cauchy’s theory of stress. The
same tendency to discard unnecessary and
unverifiable hypothesis has been exempli-

fied in Electricity, in the transition from
Poisson and Ampere to Thomson and

Maxwell.
One feature which is met with in our

period is the frank appeal to intuition.

This is noticeable already in the case of

Fourier, as has been already indicated,

but it runs through the whole school.

Even Cauchy, who was or became
something of a purist according to the
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standards of his day, did not shrink on
occasion from handling divergent inte-

grals, but managed always to come right

in the end. There is this to be said

about mathematical work, in any but

quite incompetent hands, that a too

careless induction sooner or later betrays

itself, and leads to a revision of the whole
calculation. The great mathematicians,

whatever licence they may have allowed

themselves, have always had a sure in-

stinct to save them from logical disaster.

The r6le which intuition plays in mathe-
matical discovery has sometimes been

slighted or even denied. But was it not

Gauss who, questioned as to the progress

of a research on which he was engaged,

replied that hehad arrived at the theorems,

and that it only remained to find the

proofs ? For such things as existence-

theorems we must of course not look,

at all events in the earlier half of our

period. The first instance of the con-

sciousness of such a requirement that

I can call to mind occurs in Green, but

he at once proceeds to appeal to physical

conceptions. He wished to satisfy him-



[ 41 ]

self as to the existence of a function satis-

fying Laplace’s equation, which should

vanish over a closed surface, and have a

definite singularity at a given internal

point. He regards it as sufficient to

remark that this is the case of an un-

insulated conducting surface under the

influence of an internal charge. The
same use of physical proofs is to be

found in Maxwell, and in an especial

degree in the writing of the late Lord
Rayleigh. The physical mathematician
may reasonably claim a certain licence

in this respect. He is often in the case

of Gauss
;

the proposition is certain,

but having his own business to attend

to, he leaves the rigorous proof to the

analyst, who ought indeed to be very

grateful to him for the exquisite logical

exercise which he has provided.

A further feature in the evolution is

the gradual recognition of geometrical

or physical meanings in various symbols

or groups of symbols which are of con-

stant recurrence. This is specially char-

acteristic of the later stages. To Laplace

and his school the potential was simply
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name with its associations came long

afterwards from Green. The equa,tion

V*<^=o lost most of its significance when
it was transformed, as was necessary for

some purposes, to polar co-ordinates, and
the recognition of the general properties

of the function was delayed. The equa-

tion itself first received an explicit inter-

pretation at the hands of Maxwell, and
the same holds with regard to the now
familiar conceptions of ‘divergence,’

‘ concentration,’ and so on. And it needs

hardly to be said that the notion of an

operator, as distinguished from the result,

belongs to the later period. The termin-

ology ofphysical entities or qualities such

as ‘isotropy,’ ‘permeability,’ and so on

is largely due to Kelvin, with his copious

onomastic faculty.

I have referred mainly to the develop-

ment of general principles and methods,

but that is, of course, not the whole of

the story. A complete history would
have to treat in some detail the special

problems which suggested themselves

from time to time. The impulse to



[ 43 ]

general theory indeed often came about

in this way. For instance, the problem
of the two electrified spheres gave the

impulse to Electrostatics, whilst Chladni’s

figures of nodal lines led up by degrees

to the theory of Elasticity. It is, more-
over, in the special applications that the

skill of the analyst is particularly evoked,

with results often of great interest and
value even from the purely mathematical

point of view. We need not go back to

the theory ofAttractions, or ofthe Figure

of the Earth, which evoked Spherical

Harmonics. The Conduction of Heat
led incidentally to Bessel Functions, and
above all to the theorems specially asso-

ciated with the name of Fourier, whilst

Poisson’s problem of the two electrified

spheres is a signal instance of the treat-

ment of a functional equation. To Kelvin

we owe the method of electric inversion,

including the astonishing solution of the

problem of the electrified spherical bowl,

which had engaged the attention of

Green, and the symmetrical treatment

of Spherical Harmonics. To Maxwell
are due the singularly beautiful solution
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of the problem of current sheets, a new
interpretation of Spherical Harmonics,
and other interesting results and pqints

of view scattered through his treatise.

As an example of a more systematic

application of mathematical technique

we may refer again to Cauchy’s wave-
problem, where the integrals afterwards

attributed to Fresnel first make their

appearance.

I have tried in this rapid sketch to do

justice especially to the pioneers in the

period ; the merits and achievements of

their more recent successors are fresh in

our memories. It was I think fortunate

that the first essays in the development
of mathematical physics were by men
whose accomplishments ranged over the

whole of mathematics, and who thus had
abundant analytical resources at their

disposal. It may be claimed indeed that

they provided almost the entire analytical

equipment for their successors down to

a comparatively recent time. You may
search for instance the volumes of Lord
Kelvin’s papers and find hardly an appeal

to any result of Pure Mathematics later
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than Cauchy, with the very important

exception of what he had discovered

himself. The most important province

of later analysis which has found a direct

application to physical questions is the

Theory of Functions, and this again, so

far as is necessary for the purpose, dates

back to Cauchy,whom I shouldbe disposed

to place, after Fourier, as highest among
the pioneers of mathematical physics.

I should like to be able to tell more
about these men, about their characters,

the vicissitudes of their lives and how
these reacted on their work, their am-
bitions, their friendships, and even their

quarrels andjealousies. Much that would
be interesting is not to be found in offi-

cial obituary notices. Sometimes an in-

dication of these more human qualities

has survived, such as the charming ac-

count of Ampere’s early career, of the

tragedy of his father’s death in the

Revolution, and of his idyllic love-story,

and even the foible attributed to him in

his later years, of carrying off in all

innocence the wrong umbrella, even

when there was no right one

!
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Some points of contrast with present

conditions may be noted. The scientific

work was largely academical, not so

much that the men held as a rule official

posts, or were trained in strict schools,

but that they were under the influence

of scientific Academies, which jealously

guarded admission, and narrowly scruti-

nized the memoii's submitted to them.

Consequently there was a tendency to-

wards what I have called the ‘grand

style,’ with great attention to form and

presentation. One result is that their

memoirs can often even now be referred

to with interest, the absence of novelty

in the subject matter being compensated

by the literary charm.

But the great and I think the envi-

able point of difference is that there was
little specialization, and no idea at all of

a divorce between Pure and Applied

Mathematics. The names I have so often

had to quote testify how fruitful the

alliance has been. And with all recog-

nition of modern difficulties, I would
quote thewords of Fourier, but in a some-

what more catholic sense than he had in
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mind ;
“ L’etude approfondie de la nature

est la source la plus feconde des de-

couvertes mathematiques.”

The absence of English names from
the first part of the record has often been

remarked upon and deplored. The whole
kory and its lessons are given in Mr
Rouse Ball’s well-known History of
Mathematics at Cambridge. We may
point with pride however to the later

achievements of our countrymen, most

of them more or less connected with this

University. Some features, specially

characteristic, which we may claim as of

English origin have been already indi-

cated, the search for definite geometrical

images of physical relations, and especi-

ally the cultivation of graphical methods.

I may in particular mention the instruc-

tive diagrams which are appended to

Maxwell’s treatise, and which have been

so great an assistance to the imagination

of his readers, and so valuable as an ex-

ample to later writers.

The period we have been surveying

had I think a fairly definite beginning,

and an almost equally definite close.
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From the mathematical point of view
its most striking achievement is the wide-

embracing scheme of relations, which
can be applied to so many diverse sub-

jects, with hardly more than a change

in the names of the various concepts.

In their purely abstract form, in the

rarefied atmosphere of Vector Fields,

Triple Tensors, and so on, these relations

might almost be developed in an hour,

though they could hardly be understood

or appreciated without reference to their

physical aspects, to which they owe all

their value. That such generality should

have been attained is an instance of the

constant endeavour of Mathematics to

reduce to simple laws the infinite variety

of nature. With a wider view than was
possible to Fourier, we may echo his

Newtonian quotation : Quod tarn paucis

tarn multa praestet geometria gloriatur.
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